Virtual Engineering, Inc.

Engineering Your Competitive Edge...

High Back Latch Assembly – Design and Analysis

Objective:

Engineer a High Back Latch for a bench seat

Constraints:

- o Meet or exceed performance specifications for strength and durability
- o 2,400 N ultimate strength
- o Design within existing package space...no changes to frame allowed
- o Must not rattle
- o 29.2 N maximum release efforts

Bench Seat Back

Production Assembly

Unlocked

Virtual Engineering, Inc.

Engineering Your Competitive Edge...

High Back Latch Assembly - Design and Analysis

Process:

- Designed with 0° locking angle
- Key locking components manufactured using fine blank stamping process to minimize dimensional variations
- Combined Spring for Catch and Pawl into one part, minimizing part count and reducing assembly complexity
- Mounting holes located at center of Catch and Pawl Pivots to minimize package space and maximize assembly strength
- o TPU Bumper and TPC-ET over-molded Catch prevent BSR
- o Performed FEA for static strength forward load requirement
- Authored DFMEA, Test Specification, DVP&R, and maintained Open Issues List
- Completed all tolerance stack-ups
- Created prototype and production drawing packages with GD&T
- Coordinated testing: Obtained quotes, ordered parts, reviewed samples, approved setups, and witnessed testing

Results:

- Light weight mechanism (Latch mass = 0.3 kg)
- Release efforts calculated in Enventive were 29.2 N max; test results were 18.2 N
- o Test results exceeded requirements at specified reliability and confidence levels
- Successful product launch

Enventive Load Calculation Find Signature FEA Enventive Load Calculation Find Signature FEA Find Signa

